
AWK:
The Duct Tape

of Computer
Science Research

Tim Sherwood
UC Santa Barbara

AWK - Sherwood 2

Duct Tape
Systems Research Environment
• Lots of simulators, data, and analysis tools
• Since it is research, nothing works together

Unix pipes are the ducts
Awk is the duct tape
• It’s not the “best” way to connect everything
• Maintaining anything complicated problematic
• It is a good way of getting it to work quickly

• In research, most stuff doesn’t work anyways
• Really good at a some common problems

AWK - Sherwood 3

Goals
My Goals for this tutorial
• Basic introduction to the Awk language
• Discuss how it has been useful to me
• Discuss some the limits / pitfalls

What this talk is not
• A promotion of all-awk all-the-time (tools)
• A perl vs. awk battle

AWK - Sherwood 4

Outline
Background and History
When “this is a job for AWK”
Programming in AWK
• A running example

Other tools that play nice
Introduction to some of my AWK scripts
Summary and Pointers

AWK - Sherwood 5

Background
Developed by
• Aho, Weinberger, and Kernighan
• Further extended by Bell
• Further extended in Gawk

Developed to handle simple data-reformatting
jobs easily with just a few lines of code.
C-like syntax
• The K in Awk is the K in K&R
• Easy learning curve

AWK - Sherwood 6

AWK to the rescue
Smart grep
• All the functionality of grep with added logical

and numerical abilities
File conversion
• Quickly write format converters for text files

Spreadsheet
• Easy use of columns and rows

Graphing/tables/tex
Gluing pipes

AWK - Sherwood 7

Running gawk
Two easy ways to run gawk
From the Command line
• cat file | gawk ‘(pattern){action}’

• cat file | gawk -f program.awk

From a script (recommended)
#!/usr/bin/gawk –f

This is a comment

(pattern) {action}

…

AWK - Sherwood 8

Programming
Programming is done by building a list of rules
The rules are applied sequentially to each record
in the input file or stream
• By default each line in the input is a record

The rules have two parts, a pattern and an action
If the input record matches the pattern, then the
action is applied

���������	 ���
���� ��

��������
	 ���
���� �

�

AWK - Sherwood 9

��������	

64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms

Output

(/icmp_seq/) {print $0}Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…
----dt033n32.san.rr.com PING Statistics----
1281 packets transmitted, 1270 packets received, 0% packet loss
round-trip (ms) min/avg/max = 37/73/495 ms

Input

AWK - Sherwood 10

Fields
Awk divides the file into records and fields
• Each line is a record (by default)
• Fields are delimited by a special character

• Whitespace by default
• Can be change with

“–F” (command line) or
FS (special varaible)

Fields are accessed with the ‘$’
• $1 is the first field, $2 is the second…
• $0 is a special field which is the entire line
• NF is a special variable that is equal to the number of

fields in the current record

AWK - Sherwood 11

��������

time=49
time=94
time=50
time=41

Output

(/icmp_seq/) {print $7}Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…
----dt033n32.san.rr.com PING Statistics----
1281 packets transmitted, 1270 packets received, 0% packet loss
round-trip (ms) min/avg/max = 37/73/495 ms

Input

AWK - Sherwood 12

Variables
Variables uses are naked
• No need for declaration
• Implicitly set to 0 AND Empty String

There is only one type in awk
• Combination of a floating-point and string
• The variable is converted as needed

• Based on it’s use
• No matter what is in x you can always

• x = x + 1
• length(x)

AWK - Sherwood 13

��������

4.9
9.4
5.0
4.1
…

Output

(/icmp_seq/) {
n = substr($7,6);
printf("%s\n", n/10); #conversion

}

Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…

Input

AWK - Sherwood 14

Variables
Some built in variables
• Informative

• NF = Number of Fields
• NR = Current Record Number

• Configuration
• FS = Field separator

Can set them externally
• From command line use

Gawk –v var=value

AWK - Sherwood 15

Patterns
Patterns can be
• Empty: match everything

•{print $0} will print every line

• Regular expression: (/regular expression/)

• Boolean Expression: ($2==“foo” && $7==“bar”)

• Range: ($2==“on” , $3==“off”)

• Special: BEGIN and END

AWK - Sherwood 16

“Arrays”
All arrays in awk are associative
• A[1] = “foo”;
• B[“awk talk”] = “pizza”;

To check if there is an element in the array
• Use “in”: If (“awk talk” in B) …

Arrays can be sparse, they automatically resize,
auto-initialize, and are fast (unless they get
huge)
Built in array iterator “in”
• For (x in myarray) {
• Not in any order

AWK - Sherwood 17

Associative Arrays
The arrays in awk can be used to
implement almost any data structure
• Set:

• myset[“a”]=1; myset[“b”]=1;
• If (“b” in myset)

• Multi-dimensional array:
• myarray[1,3] = 2; myarray[1,”happy”] = 3;

• List:
• mylist[1,”data”]=2; mylist[1,”next”] = 3;

AWK - Sherwood 18

���������

40: 441
50: 216
…
490: 1

Output

(/icmp_seq/) {
n = int(substr($7,6)/10);
hist[n]++; #array

}
END {

for(x in hist)
printf(“%s: %s”, x*10, hist[x]);

}

Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
…

Input

AWK - Sherwood 19

Built-in Functions
Numeric:
• cos, exp, int, log, rand, sqrt …

String Functions
• Gsub(regex, replacement, target)
• Index(searchstring, target)
• Length(string)
• Split(string, array, regex)
• Substr(string, start, length=inf)
• Tolower(string)

AWK - Sherwood 20

Writing Functions
Functions were not part of the original spec
• Added in later, and it shows
• Rule variables are global
• Function variables are local

function MyFunc(a,b, c,d) {

Return a+b+c+d

}

AWK - Sherwood 21

Other Tools
Awk is best used with pipes
Other tools that work well with pipes
• Fgrep: fgrep mystat *.data (parse with –F:)
• Uniq: uniq –c my.data
• Sort
• Sed/tr: (handy for search and replace)
• Cut/paste: (manipulating columns in data)
• Jgraph/Ploticus

AWK - Sherwood 22

My Scripts
Set of scripts for handling data files

From the array files, my scripts will generate
simple HTML tables or TeX tables, transpose the
array, and other things.

A:1:1.0

A:2:1.2

B:1:4.0

B:2:5.0

Fgrep output

Name:1:2

A:1.0:1.2

B:4.0:5.0

Array of
numbers

Name | 1 | 2

A | 1.0 | 1.2

B | 4.0 | 5.0

Human readable
arrayify prettyarray

AWK - Sherwood 23

Some Pitfalls
White space
• No whitespace between function and ‘(‘

• Myfunc($1) = ☺
• Myfunc ($1) = �

• No line break between pattern and action
Don’t forget the -f on executable scripts
• This will just die silently… very common

mistake
No built in support for hex
• On my web page there are scripts for that too

AWK - Sherwood 24

Summary
Awk is a very powerful tool
• If properly applied
• It is not for everything (I know)

Very handy for pre-processing
Data conversion
It’s incrementally useful
• Each step of the learning curve is applicable

that day.
Thank you

