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Duct Tape
Systems Research Environment
• Lots of simulators, data, and analysis tools
• Since it is research, nothing works together

Unix pipes are the ducts
Awk is the duct tape
• It’s not the “best” way to connect everything
• Maintaining anything complicated problematic
• It is a good way of getting it to work quickly

• In research, most stuff doesn’t work anyways
• Really good at a some common problems
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Goals
My Goals for this tutorial
• Basic introduction to the Awk language
• Discuss how it has been useful to me
• Discuss some the limits / pitfalls

What this talk is not
• A promotion of all-awk all-the-time (tools)
• A perl vs. awk battle



AWK - Sherwood 4

Outline
Background and History
When “this is a job for AWK”
Programming in AWK
• A running example

Other tools that play nice
Introduction to some of my AWK scripts
Summary and Pointers
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Background
Developed by
• Aho, Weinberger, and Kernighan
• Further extended by Bell
• Further extended in Gawk

Developed to handle simple data-reformatting 
jobs easily with just a few lines of code. 
C-like syntax
• The K in Awk is the K in K&R
• Easy learning curve
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AWK to the rescue
Smart grep
• All the functionality of grep with added logical 

and numerical abilities
File conversion
• Quickly write format converters for text files

Spreadsheet
• Easy use of columns and rows

Graphing/tables/tex
Gluing pipes
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Running gawk
Two easy ways to run gawk
From the Command line
• cat file | gawk ‘(pattern){action}’

• cat file | gawk -f program.awk

From a script (recommended)
#!/usr/bin/gawk –f

# This is a comment

(pattern) {action}

…
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Programming
Programming is done by building a list of rules
The rules are applied sequentially to each record 
in the input file or stream
• By default each line in the input is a record

The rules have two parts, a pattern and an action
If the input record matches the pattern, then the 
action is applied

���������	 ���
���� ��

��������
	 ���
���� �

�



AWK - Sherwood 9

��������	

64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms

Output

(/icmp_seq/) {print $0}Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…
----dt033n32.san.rr.com PING Statistics----
1281 packets transmitted, 1270 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 37/73/495 ms

Input
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Fields
Awk divides the file into records and fields
• Each line is a record (by default)
• Fields are delimited by a special character

• Whitespace by default
• Can be change with

“–F” (command line) or
FS (special varaible)

Fields are accessed with the ‘$’
• $1 is the first field, $2 is the second…
• $0 is a special field which is the entire line
• NF is a special variable that is equal to the number of 

fields in the current record
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time=49
time=94
time=50
time=41

Output

(/icmp_seq/) {print $7}Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…
----dt033n32.san.rr.com PING Statistics----
1281 packets transmitted, 1270 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 37/73/495 ms

Input
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Variables
Variables uses are naked
• No need for declaration
• Implicitly set to 0 AND Empty String

There is only one type in awk
• Combination of a floating-point and string
• The variable is converted as needed

• Based on it’s use
• No matter what is in x you can always

• x = x + 1
• length(x)
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4.9
9.4
5.0
4.1
…

Output

(/icmp_seq/) {
n = substr($7,6);
printf( "%s\n", n/10 ); #conversion

}

Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…

Input
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Variables
Some built in variables
• Informative

• NF = Number of Fields
• NR = Current Record Number

• Configuration
• FS = Field separator

Can set them externally
• From command line use

Gawk –v var=value
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Patterns
Patterns can be
• Empty: match everything

•{print $0} will print every line

• Regular expression:   (/regular expression/)

• Boolean Expression: ($2==“foo” && $7==“bar”)

• Range: ($2==“on” , $3==“off”)

• Special:  BEGIN and END
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“Arrays”
All arrays in awk are associative
• A[1] = “foo”; 
• B[“awk talk”] = “pizza”;

To check if there is an element in the array
• Use “in”:  If ( “awk talk” in B ) …

Arrays can be sparse, they automatically resize, 
auto-initialize, and are fast (unless they get 
huge)
Built in array iterator “in”
• For ( x in myarray ) {
• Not in any order
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Associative Arrays
The arrays in awk can be used to 
implement almost any data structure
• Set:

• myset[“a”]=1; myset[“b”]=1;
• If ( “b” in myset )

• Multi-dimensional array:
• myarray[1,3] = 2;  myarray[1,”happy”] = 3;

• List:
• mylist[1,”data”]=2;  mylist[1,”next”] = 3;
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40: 441
50: 216
…
490: 1

Output

(/icmp_seq/) {
n = int(substr($7,6)/10);
hist[n]++; #array

}
END {

for(x in hist) 
printf(“%s: %s”, x*10, hist[x]);

}

Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
…

Input
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Built-in Functions
Numeric:  
• cos, exp, int, log, rand, sqrt …

String Functions
• Gsub( regex, replacement, target )
• Index( searchstring, target )
• Length( string )
• Split( string, array, regex )
• Substr( string, start, length=inf)
• Tolower( string )
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Writing Functions
Functions were not part of the original spec
• Added in later, and it shows
• Rule variables are global
• Function variables are local

function MyFunc(a,b, c,d) {

Return a+b+c+d

}
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Other Tools
Awk is best used with pipes
Other tools that work well with pipes
• Fgrep:  fgrep mystat *.data ( parse with –F: )
• Uniq: uniq –c my.data
• Sort
• Sed/tr: (handy for search and replace)
• Cut/paste: (manipulating columns in data)
• Jgraph/Ploticus 
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My Scripts
Set of scripts for handling data files

From the array files, my scripts will generate 
simple HTML tables or TeX tables, transpose the 
array, and other things.

A:1:1.0

A:2:1.2

B:1:4.0

B:2:5.0

Fgrep output

Name:1:2

A:1.0:1.2

B:4.0:5.0

Array of 
numbers

Name | 1 | 2

A | 1.0 | 1.2

B | 4.0 | 5.0

Human readable
arrayify prettyarray



AWK - Sherwood 23

Some Pitfalls
White space
• No whitespace between function and ‘(‘

• Myfunc( $1 ) = ☺
• Myfunc ( $1 ) = �

• No line break between pattern and action
Don’t forget the -f on executable scripts
• This will just die silently… very common 

mistake
No built in support for hex
• On my web page there are scripts for that too
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Summary
Awk is a very powerful tool
• If properly applied
• It is not for everything (I know)

Very handy for pre-processing
Data conversion
It’s incrementally useful
• Each step of the learning curve is applicable 

that day.
Thank you


